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ABSTRACT

The onset of Marangoni convection in the float zone of liquid silicon is
studied from a state at rest in the absence of gravity. This time-dependent
flow problem is solved numerically with the aid of the Navier-Stokes
equations for an axisymmetric flow with nonlinear free surface conditions.
On this free surface the temperature gradient is generated by heat transfer
and radiation from a heater, which is symmetrically located between the two
walls of the float zone. After a certain time, the flow is asymmetrically
disturbed by moving the heater for a short time away from its symmetric
position and back. Three different Marangoni numbers (based on the
temperature difference between heater and melting point of silicon) are
computed: 10,400, 30,225, and 50,050. The results show that for Ma
= 10,400 the flow is steady and stable. For the two higher Marangoni
numbers, however, the disturbed flows become unstable, and persistent
oscillatory modes of 022 Hz for Ma = 30,225 and 027 Hz for
Ma = 50,050 develop. The free surface itself is little deformed but
computation with a flat surface confirms Kazarinoff and Wilkowski’s 1989 .
result that the flat surface suppresses instability. It is conjectured that the
flat surface imposes a strong local flow symmetry, which has a damping
effect, and that, in the case of a deformable free surface, instability and
maintenance of oscillation occur when the two rolls attached to the corners,
which are formed by the wall and the free surface, separate and become
vortices with extremal vorticity. These two vortices interact rhythmically by
alternating build-up and decay.

ADMINISTRATIVE INFORMATION

This work was supported by the NASA-Microgravity Program under Order No. C-
32007-M of the NASA Lewis Research Center.

INTRODUCTION

In outer space the growth of silicon crystals with high purity can be achieved in a
greatly reduced gravity field, so that the melt is not disturbed by fluid motion due to
buoyancy. Containerless devices, which are proposed to avoid chemical reactions between
melt and container, have interfaces between melt and an inert-gas environment. However,
the temperature gradient between heater and solid silicon, when the heat is transmitted
across and along the interface, causes a gradient of the surface tension that generates a fiuid
flow in the melt. This surface-tension driven flow is called Marangoni convection or
thermocapillary convection and can occur in steady and uns (non-oscillatory or
oscillatory) modes that are separated by a critical flow parameter.!~> The latter unsteady
flow is particularly undesirable for crystal growing because an unsteady flow affects the
quality of silicon chips considerably. Methods such as rotating the float zone,® MHD
effects,* and counteracting jets’ have been proposed to suppress this undesired fiuid motion.

The numerical study of Marangoni convection in microgravity has been covered
extensively in the literature for a pumber of devices with various degrees of model
sophistication. Review pa?ers and recent spublications with background references include
those by Ostrach,® Linde,” Preisser ef al.,? Schwabe,” Young and Chait,!® and the GAMM




Workshop, Roux.!! (The GAMM Workshop dealt essentially with a “benchmark™ model
which is different from this paper’s approach).

This paper is based on the arrangement, sketched in Fig. 1. Liquid silicon is held
together between two coaxial circular-cylindrical rods of solid silicon by the surface tension
of the liquid-gas interface in a microgravity environment. The liquid bridge between the two
rods is called the float zone. The heat for the melting process is provided by a ring heater
which moves coaxially over the rod. During that time solid silicon is molten and then freezes
to a monocrystal. This process is modeled according to Fig. 2 with the following
simplifications: The boundaries between molten and solid silicon are considered planar with
melting and freezing neglected. On the liquid-gas interface, the effect of the gas on the liquid
shear stress is neglected, that is, the interface is considered a “free surface.” The flow
region is assumed axisymmetric and, together with the ring heater, fixed. However, no
symmetry along the center plane between the two walls is enforced so that an oscillatory fiow
over the whole float zone can be studied. At the time ¢ = 0 the liquid silicon has the melting
temperature T = T, and at this instant, the heater is turned on to a maximum temperature
Ty > Ty. The developing temperature gradient along the free surface creates the stress for
the Marangoni flow which in time penetrates into the interior of the float zone. For small
differences in the temperatures Ty and T, a steady state will be reached after a certain time.
Beyond a critical difference Ty — Ty the flow is expected to become unstable, and a time-
dependent mode (non-oscillatory or oscillatory) in the direction parallel to the axis might
appear. It is the purpose of this paper to find these two modes and to analyze the
corresponding flow and temperature fields.

The source of energy, which drives the Marangoni convection, comes from the ring
heater and is transmitted through the free surface. In mathematical terms, a temperature
gradient (perpendicular to the surface) is generated by heat radiation and heat transfer from
the ring heater. The boundary conditions on the free surface and the geometric
representation of the adjacent immediate flow region are hence very sensitive to both
physical and numerical modeling. It was found by Kamotani ef al.> and by Kazarinoff and
Wilkowski!® that the nonlinear free surface conditions should not be linearized (that is, a flat
surface should not be assumed) as most other researchers have done because surface
deformation would initiate instability from a critical Ty — Ty on. To check their finding, the
full nonlinear free-surface conditions are retained in this paper. It may be mentioned that
experiments!* indicate only a slight deviation of the real surface from the flat cylindrical one,
a fact which might not, however, exclude a sensitivity of the deformable free surface toward
flow instability (a fact confirmed in this paper).

The most serious restrictions of this low model are axisymmetry and planar end walls
of the rods, with melting and freezing processes neglected. To a lesser degree the
assumption of a fixed ring heater affects the study of the real float zone. The axisymmetry
imposed on the flow prevents a full investigation of instability because the analysis of the
various modes of instability is restricted to that of axisymmetric disturbances. Experiments
with earth gravity for a much larger Prandtl number than that of 'guid silicon have shown
that azimuthal disturbances are more ‘“‘dangerous” than axial ones.” An argument for the
importance of axisymmetric modes was given by Kazarinoff and Wilkowski.!® The definitive
answer to the question of whether axisymmetric modes are crucial must be obtained from
future studies. _

Planar end walls of the rods can caunse a singularity at the triple point of the solid,
liquid, and gaseous phases. This singularity was mentioned by Zebib ef al.'” In reality, as it
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is conjectured from Fig. 1, a cusp might develop which prevents such a singularity. Here, the
singularity cannot be avoided unless the assumption of a planar end wall is abandoned. Most
researchers ignore this singularity because it appears to have only a local effect.

Liquid silicon has a Prandtl number of 0.023. There are only a few papers which deal
with such a low Prandtl number. Non-axisymmetric oscillations of the fioat zone have been
observed experimentally for high Prandtl-number flows by Kamotani et al.'> who also argue
that the deformable free surface is essential for the onset of instability. Kazarinoff and
Wilkowski'® found numerically axisymmetric oscillations in a liquid-silicon float zone and
Fowlis and Roberts!® computed axisymmetric oscillations in a rotating liquid-silicon float
zone. In a numerical study with a general three-dimensional flow code, Rupp ef al.?® found
azimuthal periodicity. However, their results are restricted to a half-zone, that is, they
considered only the region —L /2 <z < 0 with a solid wall at z = 0 in Fig. 2 and an
adiabatic free surface. The restriction to a half-zone applies also to recent instability
studies.?»2! The only study, the authors are aware of, that was made with almost the same
flow model but with a different numerical scheme and with a much coarser grid and time
step, is recorded in a letter by Kazarinoff and Wilkowski.’® Unfortunately, there is not
enough information to make a comparison with the present results, and an investigation of
the discrepancies is not possible.

THE INITIAL-BOUNDARY VALUE PROBLEM

The mathematical description of the flow model is based on the Navier-Stokes
equations for an incompressible Newtonian fluid. With cylindrical polar coordinates r, ¢, z
and the corresponding velocity components &, v, w, with axisymmetry 8/3¢ = 0, andv = 0,
the equations of motion and the energy equation are:

u, + % +w, = 0 ’ (1)

o+ )y + @) = = b+l + (), H] @
1 \ 1 1

w, + ';'(mw)r + (W), = — 'p‘Pz +viw, + Trrt Wal (3)

T, +uT, +wT; = KT, + 1T, +T,] . @)

Here, p, p, v, and K are the pressure, the density, the kinematic viscosity, and the thermal
diffusivity of the liquid silicon, respectively. It may be noticed that the conservation form of
the nonlinear terms in Egs. (2) and (3) is not retained in Eq. (4) for numerical reasons.

The boundary conditions for the float zone are (Fig. 2):
Cold surfaces:
z=:%, 0<r<R: u=w=p,=0, T=Ty . (5)




Axis:

L
= z<L
y = +

ro|[-

,r=0 u=0,w=p=T,=0. (6)

The free surface is described by r = h(z, t), and the boundary conditions are?-2*:

hl= U"'th s (7)
P —2uu, + Wy, +w)h, = —aM(RLl+i1:)—Ur V1+h? , (8
(@ — 2w dhy + i, +w,) = “’“('1:—1*?1;)"‘“‘ Vi+r? ©)

where Egs. (8) and (9) are the stress components in the r- and z-directions. It is
1 1 1 bz

1
—_— —= —_ s 10
Ri R 1+ h? ( h 1+h§) (9
o= oy —7(T-Ty) . (11)

The constant coefficient of the surface tension is Ou, 7 is the temperature coefficient of the
surface tension g, u is the dynamic viscosity with 4 = pv, and 1/R; and 1/R; are the surface
curvatures in the planes z = const and ¢ = const, respectively.

For a flat free surface with &, = 0, Eq. (7) reduces to 4 = 0, and one obtains from
Egs. (8) and (9) for the shear stress at the free surface

W, = 0y = =T, . | (12)

The occurrence of a jump in w, at z = +L /2 can be seen immediately since w, is equal to
zero along the wall but nonzero at the triple point when this point is approached from the
free surface. w, can also be interpreted as negative vorticity. Because of the assumptions of
axisymmetry and v = 0, only the ¢component of the vorticity vector, defined by
wy = U; —W,, is nonzero.

The temperature distribution of the free surface is prescribed by the temperature
gradient generated by the heat conduction and radiation from the heater

T, - h,T,
— kL it = oT — 8 T -¢% , 13
k T aof ) + se( ) (13)
0= Ty +(TH—T‘4)GXP[_LZ;}:/40 ’ (14)




The constant k is the thermal conductivity, o the heat transfer coefficient, s the
Stefan-Boltzmann constant, ¢ the emissivity, and a is a distribution parameter of the heater
function # which approximates the heater. Ty refers to the maximum temperature of the
heater.

Equation (4) imposes a feedback mechanism on the whole system in the form that, at
cach time step, Eq. (4) provides an update of the surface temperature which in turn affects
the boundary conditions of the flow field. The update of the flow field then modifies the
temperature field, and a new cycle starts. To improve the numerical stability the temperature
field is computed with the known velocity field of the previous time step. The numerical
error due to this procedure is extremely small. Thus, only one cycle between the
temperature and velocity fields is necessary.

As initial conditions it is assumed that the fluid is at rest at the melting temperature
Ty, that p = oy, that the free surface is flat (# = R), and that over an extremly short time
span the temperature Ty of the heater is gradually turned on. In order to induce instability
of the float zone, which so far is symmetric with respect to the plane z = 0, flow and
temperature fields can be disturbed at a given instant by dislocating the ring heater for a
certain time span. The initial-boundary value problem, defined by Eqgs. (1) through (11), (13)
and (14), can be made dimensionless in various ways. For instance, one could scale the
velocity either by K /R or by YAT /u. In the latter case the following characteristic quantities
would appear: length R, velocity 4Af /u, time Ru/yAT, temperature AT, and pressure
(7AT)?/uv. In addition to the Prandtl and Marangoni numbers (or Reynolds number
Re = Ma /Pr), the Weber number YAT /o), (which is here equal to the Capillary number),
the Nusselt number aR/k, and the radiation number seRAT3/k will occur. Since no
simplifications (truncations) of the original boundary-value problem have been made, the
dimensional form as well as the dimensionless models are equivalent. As in Refs. 13 and 16,
because of the importance of silicon, the dimensional form is retained. The following data
from Refs. 3 and 10 are used:

Table 1. List of constants for silicon.

p= 25 g/cm3

p= 0.0088 g/em s

v= 0.0035 cm?/s

k = 0.32-10" erg/cm s °C
K= 015 cm?/s

a= 0.64-10° erg /s cm? °C
oy = 720 dyn fcm

q= 0.43 dynjem °C

Ty = 1685K

e= 03

Pr = 0.023

Ma = 325 RAT, AT = Ty — Ty |

The Stefan-Boltzmann constant is s = 5.668-10~° erg /cm? s K*, and the Prandtl number Pr
and Marangoni number Mg are defined by

=X, Ma=&“%z. @15)




Another Marangoni number can be defined that is based on the temperature difference
between the highest surface temperature T, and Ty . This Marangoni number, designated
by Ma* = RA(T wmax — Tary/pK, is not an independent parameter but part of the solution.

OUTLINE OF THE NUMERICAL PROCEDURE

The numerical solution of the initial-boundary value problem, defined by Egs. (1)
through (11), (13) and (14), is carried out with the aid of a finite-difference technique,
boundary-fitted coordinates, and artificial compressibility. Details are given in Ohring and
Lugt, 2. with applications to different flow problems.?*-* Thus, only an outline is given in this
paper. Hsieh and Pline,? in a numerical scheme somewhat similar to the present one, also
employ boundary-fitted coordinates and artificial compressibility. In addition, they use a
third-order upwind scheme for the convective terms, whereas in this paper central
differencing without added smootaing terms are used for the convective terms. Reviews?’:28
on numerical methods for free boundaries also describe other possible methods.

For the numerical integration of this initial-boundary value problem it is convenient to
make a boundary-fitted coordinate transformation. In the figures that follow, the origin of
the z-coordinate is shifted to —L /2, that 1is, the new coordinate is
2’=2+4+L[2= 7z +0.5cm. Figure 3a is a schematic drawing of the way in which the
physical plane (z’, r) is mapped onto the computational domain (£, n). Only the coordinate
lines which form the boundaries of the two regions are drawn. The coordinate lines in
physical space are mapped onto a uniformly spaced Cartesian mesh with a unit mesh spacing
in each coordinate direction.

As the flow field evolves in time, the grid in physical space will move and its
coordinate lines will be attracted to regions of high flow gradients through the use of an
adaptive-grid technique. However, the Cartesian grid in computational space always remains
fixed and uniform. This is the major advantage of using a mapping. The physical region is
mapped onto a computational space with a Cartesian grid consisting of 161 points in the
£—coordinate direction and 99 points in the n—coordinate direction. Total mass conservation
at each time step is enforced by distributing any deficient or surplus amount evenly along the
free surface. (It may be mentioned that the number of grid points used in this paper is
almost two orders of magnitude greater than that of Ref. 13, a fact of particular importance
for the accuracy of the solution at the free surface).

The curvilinear coordinates (£, n) are obtained as solutions of the two elliptic partial
differential equations with the physical space coordinates (z, r) as independent variables

btba= @+OPED, ae)
T + 0 = (02 +72) Q*(E, n) . (17)

P* and Q* are control functions.? Since all calculations are to be done in the rectangular
computational domain, these two elliptic partial differential equations are transformed by
interchanging the dependent and independent variables. As a result, the physical space
coordinates (z, r) are solved in terms of the computational space coordinates (€, n) at each
" time step.® _

The continuity equation (1) is replaced by an equation with pseudo-compressibility for
numerically conserving mass at each physical time step:




p,+u,+%+wz=0. (18)

7 is the pseudo-time. Mass conservation was excellent for all flow cases computed:
Typlcallg' the average value of | V3’| for the largest Marangom number was between 10~
and 10 s~1, except when the flow was disturbed by the moving heater. Then, the average
value of |V | was between 107> and 1072 s~). These data may be compared with the
maximum value of vorticity of 1350 s~1.

Altogether six partial differential equations for u, w, T, r, z, and p must be solved
with the proper boundary conditions. The finite-difference technique for solving these
equations is briefly described in the following way: All spatial derivatives, including one-
sided derivatives at the boundaries, are replaced by finite-difference operators of second
order in the computational space. The time-differencing procedure is implicit with a certain
number of pseudo-time steps for each physical time step.

A “four-color” scheme (Fig. 3b) is used in the interior of the computational space.
The use of such a scheme, which can be vectorized, resulted in an order of magnitude
increase in computcer speed on the Cray-XMP -2/16 and Cray-YMP 8/64 on which the
computations were performed. The “four-color” scheme consists of obtaining updates for u
and w at all the o points simultaneously, then at all the ] points, the x points, and the A
points, in that order. The latest available updates are used in this process. The “four-color”
scheme is also applied to p and to T independently.

The computational cycle for one complete pseudo-time step iteration consists of (a)
applying the “four-color” scheme to compute updates for r and z followed by obtaining the
latest updates for r at successive points along the left and right boundaries; (b) obtaining
updates for p at successive points along the boundaries from the boundary conditions for p
followed by applying the “four-color” scheme to compute updates for p in the interior; and
(c) obtaining updates for u and w at successive points along the boundaries from their
boundary conditions, and then obtaining updates for & at successive points along the free
surface from the kinematic condition (7), followed by applying the “four-color” scheme to
compute updates for 4 and w in the interior.

At the completion of this computational cycle, after the latest updates for r, z, u, and
w satisfy certain convergence criteria at all points, these updates are the solution at the new
time level # + 1. If the convergence criteria are not met, cycle (a) through (c) is repeated
until they are met. A new time step is considered computed when the corresponding
components of the velocity fields of two consecutive iterations are within 1% of each other.
The accuracy of a very similar numerical scheme was checked with fine grids. It may be
mentioned that the singularities at r = R, z = + L /2 diminish the efficiency of the
numerical scheme considerably, but their range of influence on the whole flow field is only
local.

Before the iterative process just described is used for obtaining r, z, u, w and p at
time level n + 1, the temperature T at the new time level n + 1 is obtained by the same
iterative method with the velocities 4 and w from time level n. Computations of the stream
function are not presented in this paper. Therefore, the streamline pictures show only
selected streamlines obtained numerically from the velocity fields. These selected
streamlines do not represent equally spaced incremental values of the mass flux.




RESULTS

Three numerical calculations were performed for Ma = 10,400, 30,225, and 50,050
with the constants of Table 1, with R= L = 1¢m and with a = 10~*. The flow was
disturbed for all three cases at t = 1.52 s by moving the heater from z = 0 to z = 0.25cm
att = 1.62 s and back at time ¢t = 1.72 s.

Before the results are given, the following definitions and remarks are useful with
regard to the graphical presentation of the data and their interpretation An axisymmetric
vortex ring is defined as a fluid motion with nested closed streamlines in the meridional plane
(r, z) with reference to a frame fixed to the center of the streamlines.3 In a steady flow, the
refesence frame is the coordinate system (r, z) itself. For the vorticity field in such a steady
flow with closed streamlines, Prandtl’s restriction® holds that the integral over the viscous
terms along closed streamlines vanishes

vcurld-ds= 0, (19)

with 45" the length element along the streamlines. Prandtl concluded that for almost
frictionless motion, that is for an almost inviscid fluid motion with arbitrarily small v but
vs# 0, the vorticity of an axisymmetric flow in the meridional plane inside a closed
streamline must be

W = const -r . (20)

This result follows from Helmholtz’s conservation law d(wy/r)/dt = 0 for an axisymmetric
inviscid fluid flow with v = 0 that yields for a steady-state flow

2-fw . @)

9 is the stream function. Eq. (20) is a special case of a maximum principle that holds for
any steady axlsymmetnc motion of a viscous fluid: w,/r can have an extremum only at the
bounda.ry A vortex ring (characterized above by nested closed streamlines) in a’ steady
flow is thus “attached” in the sense that its wy/r - field has no extremum inside the flow
region and that lines of constant wy/r may at the most form “tongues.” However, this
vorticity field without extremum still must obey restriction (19).

Vortex shedding is an intrinsically time-dependent process when the tongues of wy/r-
lines pinch off and form closed lines. This means that an extremum of w,/r has developed
and that the vortex ring has “detached.” Because of the importance of the w;/r - field,
vorticity is presented in the text that follows in the form of lines of constant wy/r. Some
examples of equivorticity lines, that is of lines of constant wy, are also given for comparison.
These lines are significant for the study of the flux of vorticity, defined by vdw,/dn, with n the
coordinate normal to the lines. That dw,/dn is relevant and not &w,/r)/dn can be seen
immediately in the example of the Poiseuille flow in a pipe, for which &(w;/r)/dn is zero at
the wall but not 8w, /8n. However, for all practical purposes the flux inside the fluid can be
discussed also with lines of constant w;/r.

It may be mentioned that the center of nested closed streamlines, the location of
extremum of w,/r, and the location of extremum of wy do not coincide in general. The
results will show that the center of closed streamlines is closer to the location of extremum
of wy/r than to the location of extremum of w;.




The Case Ma = 10,400

The Marangoni number Ma = 10,400 corresponds to a temperature difference
Ty — Ty of 32°C. Figure 4 shows lines of constant wy/r at six different times (solid lines
represent negative and dashed lines positive contours) prior to and after the asymmetric
disturbance of the flow. After the heater is turned on at ¢t = 0, immediately strong layers of
vorticity along the free surface are generated by the surface shear stress that increase in
strength toward the corners (which are formed by the walls and the free surface).
Associated with the heater-generated surface shear stress is the occurrence of surface
velocity which increases toward the corners, builds up in time, and reaches values up to
2.93 cm [s. This process is called slamming. The surface vorticity is forced away from the
walls and deflected into the interior by forming tongues. This curling deflection of surface
vorticity due to slamming creates wall vorticity of opposite sign that also forms tongues
beneath. The flow situation is different from ordinary cavity flows in which the sign of the
vorticity does not change at the corner, and a boundary layer along the entire solid wall
develops.3® In Fig. 4 no vortex shedding, that is, no extremum of wy/r, is observed. At
t = 10.5 s the flow reaches an almost steady state. The enlarged core of the right roll is
displayed in Fig. 5 which shows lines of constant wy/r indicating a smooth transition from
high corner values to zero at the center point r = 1, 7z’ = 0.5 cm. Thus, the maximum
principle for wy/r is obeyed; the roll is “attached.” For comparison, Fig. 6 demonstrates
the occurrence of extrema of wy and hence the unsuitability of the wy - field to distinguish
between steady state and shed vortices. In Fig. 7 the surface voiticity (wy), is displayed
which is equal to the negative shear stress at the surface. Since this free surface is barely
deformed (that agrees with Kazarinoff and Wilkowski’s findings'®), the surface vorticity can
be checked, for the computed T, given, with Eq. (12) for a flat surface. The agreement is so
good that the two curves, shown in Fig. 7 for the times 1.00s, 1.72 s, and 10.5 s, are
indistinguishable, except at the extrema near the wall. Surface vorticity increases with time
near the walls. The tongues formed by the surface and wall vorticity prevent the two toroidal
convection rolls to occupy the whole float zone and confine the main fluid motion to the
surface region. The streamlines in Fig. 8 show these rolls with the flow direction from
warmer to cooler parts of the free surface. The center of the rolls moves slightly toward the
symmetry line z'= 0.5 cm but stays close to the free surface. At almost steady state
t = 10.5 s, two additional rolls beneath the main ones occur (they have been observed
already at t = 7.5 s but not shown in Fig. 8).

The isotherms in Fig. 9 reveal that the temperature gradient at the cold walls increases
with time but is unevenly distributed along the walls. This means that the heat transfer from
the liquid to the solid phase increases with time but much more near the free surface. This
will be verified quantitatively further below. The temperature at the free surface itself, that is
the difference (T, — Ty)°C, is plotted in Fig. 10a for times before the disturbance is
imposed. The curves end at the cold wall at a nonzero angle. The corner points
(r = 1, 2’ = 0 and 1 cm) are thus singular. The values of the Marangoni number Ma* are
230 att = 0.50s,268at? = 1.0s,and 278 at¢ = 1.52 5.

Despite the strong disturbance imposed at f = 1.52 s, there is no tendency toward
instability. The flow field returns quickly to an almost steady state as demonstrated in Fig. 11
- where the surface vorticity at z' = 0.5 s is plotted against time. A tiny damped oscillation is
visible that is negligible if one considers that at ¢ = 4.0 s the amplitude is less than 2% of the
maximum surface vorticity. The lines of constant w,/r in Fig. 4 at t = 10.5 s display
symmetric tongues except for the lowest level of vorticity of the order one s~1. This
asymmetry appears only at a level of less than 2% of the maximum surface vorticity which
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reaches a value of |(wy)|; = 140 s~! (Fig. 7). The surface velocity w, for t = 10.5 s is given
in Fig. 12 and reveals complete symmetry.

The temperature fields in Fig. 9 change barely after the disturbance except for a thin
layer along the free surface as shown in Fig. 10b. From ¢t = 7.5 5 on the surface temperature
is symmetric around z' = 0.5 cm and the two curves for t = 7.5s5 and ¢ = 10.5 s coincide
completely with a maximum surface temperature difference of T, — Ty, = 0.80 which
corresponds to a value of Ma* = 260°C. This coincidence confirms that the fluid motion is
at an almost steady state. The result does not agree with Kazarinoff and Wilkowki’s finding!>
that instability should occur at a Marangoni number of Ma = 1202. In this context it may be
mentioned that symmetric initial solutions should remain symmetric in time with an accurate
numerical scheme and should only develop asymmetrical patterns after an asymmetric
disturbance is imposed.

The Case Ma = 50,050

The second case with Ma = 50,050 corresponds to a temperature difference of 154°C.
As in the previous case, the heater was turned on at ¢t = 0 in a symmetric position and then,
at ¢t = 1.52, the heater was moved out of this symmetric position and back to create an
asymmetric disturbance of the flow field. Lines of constant wy/r, surface vorticity, and
streamlines are shown in Figs. 13 through 16, and isotherms and surface temperature in Figs.
18 and 19 for the period from ¢t = 1.50 s to 4.00 s.

As expected, the slamming of the flow near the surface against the cold walls is larger,
compared to the flow of the lower Marangoni number. The core of the rolls is wider (Fig.
13), and curved tongues of vorticity from the free surface fill out the core, without forming
closed wy/r - lines before the disturbance (Fig, 14, r = 1.5 5s). Fig. 15 shows the magnitude
of the surface vorticity which reaches a value of 1200 s~! at f = 2.5 s. Maximum surface
velocities of about 10 cm /s occur. The two additional weak toroidal rolls beneath the main
rolls develop earlier than for Ma = 10,400 (Fig. 16).

: The disturbance imposed causes now an asymmetric pair of rolls and permanent
oscillation. The rolls have extrema of wy/r as seen in Fig. 14, ¢t = 2.5 s, indicating detached
rolls. Compared to attached vortices characterized by vorticity tongues only, detached
vortices have a larger moment of inertia due to higher core rotation. The way detached rolls
increase and then maintain the oscillation of the float zone for Ma = 50,050 will be
explained in detail below. It suffices here to demonstrate the undamped oscillation. In Fig.
17 the surface vorticity at z'= 0.5cm and z'= 0.0125 cm is plotted against time. The
amplitude increases and approaches a constant value. The frequency of the oscillations is
0.27 Hz and is constant-over the time span computed.

Isotherms and surface temperature are plotted in Figs. 18 and 19. Major changes in
the temperature field occur only in a layer adjacent to the free surface. The surface itself
deforms on a “microscopic” scale which is of the order of 10~* cm, in fair agreement with
Kazarinoff and Wilkowski.! . .

The last two cycles from ¢ = 25 s to ¢ = 34 5 have almost constant amplitude, and
their behavior is recorded in Figs. 20 through 29. Lines of constant w,/r in Figs. 20 and 21
and equivorticity lines in Fig. 22 reveal the oscillatory behavior of the flow field in the form
of rolls of pulsating size. The main activity is restricted to the upper half of the float zone
near the free surface. The corresponding surface vorticity, surface velocity, streamlines,
isotherms, and surface temperature are plotted respectively in Figs. 23 through 27.
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A close-up of the core region of the rolls in Fig. 21 is being used now to describe the
cyclic change of the float zone. During the transient phase, each of the two rolls has
established a core of vorticity with extreme values (visible as nested closed w,/r-lines except
at certain transition phases). This local extremum assumes maxima and minima during a
cycle representing periods of accelerating and decelerating core rotation. The alternating
build-up and decay of the rolls is accompanied by vorticity flux, changing its direction and
visible in the form of retreating and advancing vorticity tongues and closed lines as well. The
direction of the flux in the right core is indicated by arrows in Fig. 21. A comparison with
equivorticity lines in Fig. 22 again demonstrates that w,/r - lines are better suited for
displaying the flow characteristics than wy - lines. Notice the occurrence of two extrema in
Fig. 22 att = 27, 28, and 30 s.

The processes involved are described now in detail. To begin with, the flow field at
t = 28 s in Fig. 21 is chosen when the largest displacement of the flow (that is, the largest
amplitude) from the “symmetric”’ flow configuration occurs. The right roll has almost
attained its smallest size associated with a maximum of |wy/r| & |—47| cm™'s™! at the
core’s center. The roll on the left side, in contrast, has acquired its largest extension and is
approaching its minimum of positive wy/r. The surface temperature has its highest value in
this left half of the float zone (Fig. 27) and provides maximum suna.- vorticity and slamming
(Figs. 23 and 24). Surface vorticity is now pouring into the center and is filling up the core
(Fig. 21, ¢ = 295). This means that the rotation of the left roll increases and the roll
contracts. This process takes place in concert with the right roll which expands through
decay, that is, through diffusion of center vorticity. An instant will be reached (t = 30 s), at
which the left roll has shrunk to its minimum; the center vorticity of the left roll has leveled
and closed lines vanish (Fig. 14, ¢t = 4.0 s shows also such an insta... At the free surface,
meanwhile, the location of zero vorticity shifts to the right because of the strengthening of
surface vorticity on the left side. This, in turn, causes the shift of maximum surface
temperature to the right since zero surface vorticity and maximum surface temperature are
tied together (Fig. 27). Thus, despite the symmetric position of the ring heater, the location
of maximum surface temperature depends on the fluctuating flow field. After 1 = 30 s the
process repeats itself with exchanged roles.

Based on this description of the pulsating core region, the following explanation is
offered. About z = 28 s (Fig. 21), the right roll shrinks to a concentrated vortex. The thin
feeding layer of vorticity, beginning at the corner and surrounding the core, strengthens
through contraction. At the same time the left roll expands; the surrounding feeding layer is
stretched and weakened. The combined action of the two vorticity layers at the surface
causes the location of w, = 0, that is (7,)pax, to move to the left. The maximum
displacement is reached at about ¢t = 28 s (Fig. 29), when the build-up and emptying of the
two rolls, respectively, have ceased. Then, the process is reversed (Fig. 21, ¢ = 29 5). The
restoring mechanism, which tries to re-establish the symmetric flow situation (zero
amplitude), consists now of contracting the left roll and of stretching the right roll. This
restoring mechanism is supported by a maximum input of surface vorticity at the left corner.
At t = 29 5, zero amplitude occurs with an overshoot that is visible in the non-symmetry of
the flow (Fig. 21) and caused by the moment of inertia of the rolls. The analogy to a
swinging pendulum is at hand.

It becomes clear now what happens during the transient phase after the heater has
briefly been moved to the right and back. At ¢t = 1.72 s, the right roll is about to form
closed vorticity lines with the largest rotation next to the the center, while the left roll has
still the feature of an attached vortex (not shown in Fig. 14). At¢ = 2.5s in Fig. 14, the
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right roll has clearly established itself as a detached vortex with closed loops and with
vorticity pouring into the center. The left roll is weaker but occupies yet about the same
space as the right roll. The stronger right roll has pushed (T;)yax a little into the left half. At
t = 4.0 s the reverse situation is seen. With each cycle, a larger body of fluid gets involved
in the oscillation. The expanding roll requires more space and squeezes the other roll which
in turn gets more concentrated. This process is supported by the simuitaneous larger shift of
(T;)max away from the symmetry line z = 0. The amplitude of the oscillation increases until
the vorticity gradients in and around the cores become so large that diffusion takes over. It
is remarkable that the frequency of the oscillation during the transient period remains
constant.

The growth and maintenance of oscillation for Ma = 50,050 is in contrast to the flow
situation for Ma = 10,400. Here, the asymmetrically disturbed flow near the surface is
immediately damped by diffusion and the core regions of the roll barely affected (Fiz 4).
There is a certain analogy of the onset of instability and the maintenance of the osc g
float zone with the symmetry breaking of a parallel flow behind a circular cylinder e
steady symmetric flow with attached vortices changes at a critical Reynolds number v a
periodic vortex street with detached vortices. It may be mentioned that at the same
Reynolds number beyond the critical one the two (unstable) attached vortices of the steady-
state configuration are weaker than the shed vortices of the (stable) unsteady configuration.
The latter one is apparently more energy-efficient than the steady flow. In the case of the
float zone, heat transfer from the surface to the walls appears to be more efficient with
detached oscillating rolls.

The instantaneous streamline patterns in Fig. 25 support the scenario described.
Something novel is being observed: Rolls near the free surface can extend toward the axis
and can spawn weak rolls within a single closed streamline. The weak rolls are indicated by
one or two streamlines only. It should be emphasized again that the streamlines do not
represent equally spaced incremental values of the mass flux. It is noteworthy, that the
streamline patterns cannot expose ‘the subtleties of the core’s vorticity field that reveal the
mechanism of oscillation.

Isotherms are given in Fig. 26. The oscillatory change of the temperature field affects
the whole float zone, including the axis r = 0. The temperature oscillation in the upper haif
is clearly governed by convection. In contrast, fluid motion near the axis is virtually absent,
and the temperature change can only take place by diffusion. The patterns of isotherms next
to the cold walls reveal that the change of the temperature gradient along the walls is larger
than that for a steady-state flow and oscillating (Fig. 28). This greater change confirms the
statement made in the introduction that the solidification of molten silicon in an oscillating
float zone would take place in a more uneven way than that in a float zone with steady
convection. The surface temperature is plotted in Fig. 27. During the oscillation period the
maximum temperature difference remains approximately 3°C but its location switches back
and forth. The periodic change of the slope of the curves at the corner is large, indicating
periodic slamming. Fig. 27 also shows that the surface temperature is almost constant at the
symmetry point z'= 0.5cm, that is, T, — Ty = 2.9°C. This value corresponds to
Ma* = 943. A comparison of Nusselt number with radiation number reveals that the latter
is one thousand times smaller.

Finally, computatiohs were made with the assumption of a flat free surface, that is,
with A = R. This assumption was introduced at ¢ = 26 s by abruptly changing the boundary
conditions (7) through (10) and (13) to
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u=20, (22
P2 = H o, (23)
w, = 0, , or pwy = 1T, , (24)

I S SR § a
Rl +R2 R ’ ("5)
— kT, = oT —0) +s¢(T* —0*) . : (26)

Although the actual free-surface deformation is small (of the order of 10~* cm), the
combined or cumulative effect of “symmetrization” of the free-surface conditions due to the
flat-surface assumption causes a damping of the disturbance (Fig. 30). Symmetrization
means that the terms in Eqs. (7) through (10) and (13), which drop out due to h, = 0, are
also terms which contribute to asymmetric behavior: Constant & = R, Eq. (25), and
vanishing 4 = 0, Eq. (22), obviously have a symmetrization effect. Although less obvious,
the same is true for the pressure at the singular points R = 1cm, z = * 1/2 cm, where the
fiat free surface condition enforces p = oy/R. On a deformable free surface, no symmetry
at and near the singular points occurs, and the pressure fluctuates. Also temperature and
temperature gradient, Eqs. (24) and (26), are affected by the assumption of a flat surface.
Near the singular points, the term |k, T,| in Eq. (13) is larger than the term | T, |, which is
zero exactly at the singular points. On a flat surface, vanishing |A,T,| near the singular
points make the temperature distribution more symmetric. This behavior influences the
vorticity distribution along the free surface, Eq. (24), in such a way that the location where
wy = 0 moves closer to the symmetry plane z = 0 and with it Tp,. The oscillation thus
diminishes. It is concluded that damping appears to be a combined or cumulative effect of
the symmetrization of all free-surface boundary conditions.

Damping of the disturbance means that the oscillatory mode of the fluid motion
changes with time to a steady mode. This result confirms the ﬁndmgs of Kamotani et al. 2
and Kazarinoff and Wilkowskil® that a deformable free surface is a necessary (but not
sufficient) condition for the float zone to become unstable.

The Case Ma = 30,225

In order to narrow in on the critical Marangoni number, a third case between
Ma = 10,400 and 50,050, that is, Ma = 30,225, was chosen and computed. The results
show also oscillations and thus instability. This means, that the critical Maragoni number
must lic in the interval 10,400 < Ma < 30,225. The frequency of the oscillations is
0.22 Hz, and Ma* at the center is about Ma* = 618. All other features of the oscillating
motion, described for Ma = 50,050, are observed here too and are gualitatively the same.

CONCLUSIONS

The two main results of this paper are (1) the existence of a critical Ma-number
between 10,400 and 30,225, at which the steady flow field becomes unstable and changes to
an axisymmetric oscillatory field. An explanatmn for this oscillation is given. (2) A
deformable free surface, even a minute one, is necessary for the onset of instability. These
- findings confirm those by Kazarinoff and Wilkowski, * althongh quantitative differences exist
- with regard to the value of the critical Marangoni number. It is conjectured that the reason
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for damping is the symmetrization effect of the boundary conditions for a flat free surface.

Both the steady-state solution at Ma = 10,400 and the oscillatory ones at
Ma = 30,225 and 50,050 consist of two toroidal rolls along the free surface and two very
weak ones beneath. The essential fluid motion takes place in the upper half of the float zone
near the free surface. The transient phase after the start of the heating process is practically
finished in less than two seconds whereas the transient oscillatory motion needs more than 30
seconds. For Ma = 50,050 the frequency of the oscillation is 0.27 Hz, for Ma = 30,225
slightly lower, that is, 0.22 Hz.

The explanation for the onset of instability and the subsequent maintenance of axial
oscillation is sought in the transition from attached rolls to detached rolls with increasing
heat energy at a critical Marangoni number. Oscillation is established from an initial
disturbance by pulsating rolls whose restoring mechanism is the build-up and decay of core
vorticity supported by the oscillating location of highest surface temperature. The overshoot
at the symmetry position is due to the large moment of inertia of the detached rolls and
overcomes diffusion until a quasi-steady state with constant amplitude is reached. The flow
quantity which is best suited as an indicator for instability and as a descriptor of the pulsating
flow process is w, /r and not wy.

The free surface deforms only slightly of the order of 10~* cm in agreement with
Kazarinoff and Wilkowski’s result.’* The velocity at the free surface is very high and reaches
values of 11 cm /s for Ma = 50,050.

The whole temperature field oscillates and causes uneven heat transfer at the walls that

is not desired for silicon crystal growth. It is thus confirmed that oscillating float zones .
should be avoided in engineering applications.
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Fig. 1. Sketch of a float zone with streamlines and ring heater after Schwabe et al. (1978).
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Fig. 2. Model of the float zone with temperature distribution of the ring heater.
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Fig 3a. Mapping of the physical plane (r, z) onto the computational plane (£, n)
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Fig 3b. “Four-color” scheme.

Fig. 3. Numerical grid layout.
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Fig. 6. Equivorticity lines (lines of constant wy) for Ma = 10,400 at t = 10.5 s. The w; -
contours are ..., -3, -1, 1, 3, ....
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Fig. 7. Surface vorticity ( = negative surface shear stress) for Ma = 10,400 of the vorticity

field in Fig. 4.
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Fig. 8. Streamlines of the vorticity field in Fig. 4 at three different times.
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Fig. 9. Isotherms for Ma = 10,400 at six different times. The T — T) - contours are
0.01, 0.02, 0.03, ... ’
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Fig. 10. Surface temperature for Ma = 10,400 of the temperature field in Fig. 9. (a) Before

and (b) after the disturbance.
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Fig. 11. Surface vorticity for Ma = 10,400 at z = 0 as a function of time.
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Fig. 12. Surface velocity w, for Ma = 10,400 at ¢t = 10.5 s.
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Fig. 13. Lines of constant wy/r for Ma = 50,050 at four different times before and after the
asymmetric disturbance. The wy/r - contours are ..., =18, —6, +6, +18, ....
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Fig. 15. Surface vorticity for Ma = 50,050 of the vorticity field in Fig. 13.
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Fig. 18, cont.
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Fig. 17. Surface vorticity for Ma = 50,050 (a) at z' = 0.5 cm and (b) atz' = 0.0125cm as a
function of time. The dots indicate instants which have been selected for studying a
cycle.
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Fig. 18. Isotherms for Ma = 50,050 at the times ¢t = 1.5, 1.72, 2.5, 4.0s. The T — Ty, -

contours are 0.04, 0.08, ..., 3.28.
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Fig. 19. Surface temperature for Ma = 50,050 of the temperature field in Fig. 18.
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Fig. 21. Lines of constant wy/r in the core region of the rolls depicted in Fig. 20. The
difference in the contour lines is unity.
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Fig. 23. Surface vorticity for Ma = 50,050 of the vorticity field in Fig. 20 at three different
times.
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Fig. 24. Surface velocity for Ma = 50,050 of the vorticity field in Fig. 20 at three different

times.
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Fig. 25. Streamlines for Ma = 50,050 of the vorticity field in Fig. 20 at four different times.
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Fig. 26. Isotherms for Ma = 50,050 corresponding to the flow field in Fig. 25. The T—-Ty
- contours are 0.04, 0.08, ..., 3.00.
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Fig. 27. Surface temperature for Ma = 50,050 at six different times in a computed cycle.
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Fig. 28. 8T [0z along the left wall as a measure for the heat flux into the wall. (a)
Ma = 10,400 at ¢ = 10.5 s and (b) Ma = 50,050 at ¢ = 28, 29, 30 s.
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Fig. 29. Close-up of lines of constant wy/r for Ma =

50,050 near the surface location of
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Fig. 30. Surface vorticity on a flat-free surface for Ma = 50,050 (a) at z' = 0.5 cm and (b)
at z' = 0.0125 cm as a function of time after the change in the surface conditions at

t= 26s.
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